

보도자료

2021.12.02.(목) 조간 <온라인 2021.12.01.(수) 즉시가능> 부터 보도해 주시기 바랍니다.

(자료문의) 치매연구그룹 김도근 선임연구원 (053-980-8364, kimvet0911@kbri.re.kr)

한국뇌연구원-경북대학교 연구팀 혈액 유래의 알츠하이머병 신규 병인 기전 규명

- 퇴행성 뇌질환의 치료전략 수립 정보제공, 알츠하이머병 예방과 병증개선 가능성 제시 -

알츠하이머병에서 나타나는 주요	증상들인 과도한 신경염증 발생 및 비
정상적인 인지 장애가 뇌혈관장벽	보호를 통한 특정 혈액 유래 단백질의
대뇌 발현 제어로 크게 개선될 수	있음이 제시되었다.

※ 뇌혈관장벽 : 뇌와 혈관 사이에 존재하는 장벽으로, 외부 물질이 혈액에서 뇌로 들어오는 것을 막는다.

한국뇌연구원(KBRI, 원장 서판길) 치매연구그룹 김형준 책임연구원, 김
재광 선임연구원, 김도근 선임연구원은 경북대학교(총장, 홍원화) 생명
과학부 김상룡 교수, 김세환 박사와의 협력연구를 통해 '알츠하이머병
의 신규 병인으로 혈액 유래 단백질인 프로트롬빈 크링글-2의 역할과
기전'을 규명했다고 보고했다.

※ 프로트롬빈 크링글-2(Prothrombin kringle-2) : 혈액 응고에 관여하는 프로트롬빈 (Prothrombin) 단백질의 구성영역 중 하나

알츠하이머병의 원인은 다양하게 제시되어지고 있지만 명확한 기
전은 아직 불분명한 상태이다. 그러나, 뇌에서 면역반응과 염증반
응에 관여하는 대표적 뇌세포인 미세아교세포의 과도한 활성에 의
한 신경퇴화 발생은 퇴행성 뇌질환에서 보편적으로 나타나는 핵심
현상 중 하나로 인식된다.

※ 미세아교세포 : 뇌 내의 면역과 염증 반응을 주관하는 비신경세포.

이머병 초기부터 환자 뇌에서 잘 보여지는 현상이다.

□ 연구팀은 실제 알츠하이머병 환자의 사후 대뇌 해마 뇌조직과 유전자변이를 통해 유도된 알츠하이머병 동물모델의 대뇌 해마에서 프로트롬빈 크링글-2 단백질의 발현이 크게 증가됨을 처음으로 확인했으며, 알츠하이머병 동물모델에서 뇌혈관장벽 보호는 프로트롬빈 크링글-2의뇌 내 유입을 억제하여 알츠하이머병 동물모델에서 보여 지는 과도한신경염증과 해마 신경세포 손상과 연관된 인지장애를 크게 감소시킬

수 있음을 확인하였다.

□ 미세아교세포의 과도한 활성과 함께 뇌혈관장벽의 손상은 알츠하

- □ 이번 연구결과에 대해 연구팀은 "알츠하이머병의 중요한 병인으로 연관될 수 있는 뇌혈관장벽 손상의 의미와 함께 뇌혈관장벽 손상 시 대뇌 신경시스템 장애를 일으키는 핵심적인 혈액 유래 단백 질로 프로트롬빈 크링글-2의 가능성을 처음으로 보여주었다. 그리고, 해당 단백질의 직/간접적 대뇌 발현 억제가 실제 알츠하이머병 예방과 병증 개선에 크게 도움이 될 수 있는 가능성을 보여 준다"라고 설명했다.
- □ 이번 연구의 성과는 약리학 및 약학 분야 우수 국제학술지인 '브리타쉬 저널 오브 파마콜로지(British Journal of Pharmacology; IF 8.739; JCR 상위 5% 이내)'에 10월 24일 게재(온라인)되었으며, 한국보건산업진흥원과 한국연구재단의 지원으로 연구가 진행되었다.

붙임1 사진 자료

[사진] (좌측부터) 김상룡 교수, 김세환 연구원, 김재광, 김도근 선임 연구원, 김형준 책임연구원

붙임2 연구의 주요내용

주요내용 설명

논문명	Control of hippocampal prothrombin kringle—2 (pKr—2) expression reduces neurotoxic symptoms in five familial Alzheimer's disease mice
저널명	British Journal of Pharmacology
키워드	Alzheimer's disease (알츠하이머병), Blood-brain barrier (뇌혈관장벽), Hippocampus (해마), Microglia (미세아교세포), Prothrombin kringle-2 (프로트롬빈 크링글-2)
DOI	https://doi.org/10.1111/bph.15681
저 자	김세환 박사(1저자/경북대학교), 문경준 박사(공동 제1저자/서울아산병원), 김형준 박사(공동 제1저자/한국되연구원), 김도근 박사 (공동 제1저자/한국되연구원), 김재 광 박사 (공동 제1저자/한국되연구원), 남영표 박사 (공동 제1저자/경북대학교), Sharma Chanchal 박사 (공동저자/경북대학교), 임은주 박사 (공동저자/경북대학교), 이신려 박사 (공동저자/한국되연구원), 김규성 박사과정생 (공동저자/한국되연구원), 하창만 박사 (공동저자/한국되연구원), McLean Catriona 교수 (공동저자/호주맬버른대학교), 진병관 교수 (공동저자/경희대학교), 신원호 박사 (공동저자/안전성평가연구소), 김동운 교수 (공동저자/충남대학교 의과대학), 오용석 교수 (공동저자/대구경북과학기술원), 홍장원 교수 (공동저자/경북대학교 의과대학), 김상룡교수 (교신저자/경북대학교)

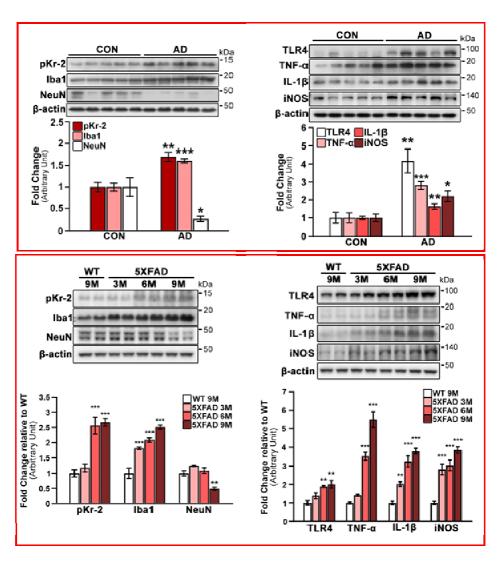
1. 연구의 필요성

- 알츠하이머병은 대표적인 퇴행성 뇌질환 중 하나로 나이가 들어감에 따라 성체 신경시스템의 기능 퇴화로 인해 인지ㆍ기억 능력의 감퇴 및 운동 수행 능력 저하가 발생하여 일상생활을 독립적으로 유지하는 것이 어려워지는 질환이다.
- 전 세계적 관심과 연구 투자 규모의 증가에도 불구하고 알츠하이머병의 정확한 발병 원인 및 기전이 명확히 밝혀져 있지 않은 상태임. 또한, 현재 사용되고 있는 알츠하이머병 치료제는 부작용 및 일시적인 증상 완화 수준에 머무른다는 한계를 가짐에 따라 새로운 치료 연구전략이 필요한 상태이다.
- 최근까지 여러 보고에 따르면 대뇌에서 신경교세포 활성이 알츠하이머병 발병과정에서 중요한 역할을 하며, 신경교세포 활성을 유도할 수 있는 내인성 인자 연구의 필요성이 강조되고 있는

실정이다. 특히, 알츠하이머병 환자 뇌에서 나타나는 특징 중 하나인 뇌혈관장벽 붕괴를 통해 혈액 단백질이 뇌 내에 유입되어 미세아교세포를 활성화 시킬 수 있는 가능성이 존재한다.

- 최근 혈액 유래 인자인 피브리노겐의 대뇌 유입이 알츠하이머성 치매에 크게 연관될 수 있다는 보고가 있었으나, 여전히 혈액 유래 내인성 신경교세포 활성 유도인자에 대한 연구는 미진한 상태이다.
- 본 연구자는 내인성 미세아교세포 활성 유도 가능성 인자로 보고된 바 있는 프로트롬빈 크링글-2의 발현 변화 수준을 알츠하이머병 환자와 알츠하이머병 동물모델(5XFAD)에서 분석하고, 동물모델에서 뇌혈관장벽 강화에 의한 프로트롬빈 크링글-2의 대뇌 발현억제와 해당 단백질의 발현 억제에 의한 알츠하이머병 예방 및 병증 개선 효능을 함께 검증하여 새로운 알츠하이머병 병인 기전과 예방 전략을 제시 하고자 한다.
 - ※ 5XFAD (five familal AD) 마우스 : 대표적인 유전자 변이 알츠하이머병 동물모델로써 뇌 내에 지속적으로 아밀로이드 베타 축적이 발생하는 특징이 있으며 더불어 신경세포 손상, 뇌혈관장벽 붕괴, 신경염증 발생, 시냅스 손상이 일어나는 대표적인 동물모델 중 하나이다.

2. 연구내용

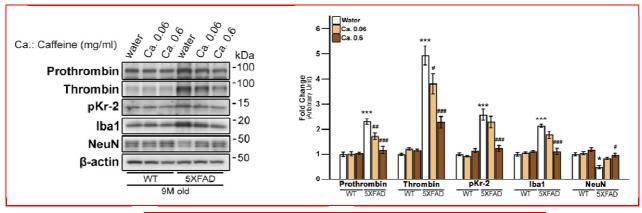

- 알츠하이머병 환자와 5XFAD 알츠하이머병 동물모델 해마 내에서 프로트롬빈 크링글-2 증가 및 신경염증 관련 단백질 증가를 확인하였다.
- 뇌혈관장벽 붕괴는 알츠하이머 환자 및 알츠하이머병 동물모델 뇌 내에 나타나는 특징 중 하나이다. 본 연구에서는 혈액 유래 인자인 프로트롬빈 크링글-2의 뇌 내 유입을 막기 위해 뇌혈관장벽을 강화시킬 수 있는 물질인 카페인을 공급하여 연구를 진행하였다.
- 그 결과 카페인 투여를 통한 뇌혈관장벽 붕괴 저해를 확인하였으며, 프로트롬빈 크링글-2의 발현도 저해되었다. 이와 더불어 프로트톰빈 크링글-2의 뇌 내 유입 억제를 통해 알츠하이머병 동물모델에서 나타나는 신경염증 감소 및 물체 인지 행동 장애 개선 효과도 확인했다.

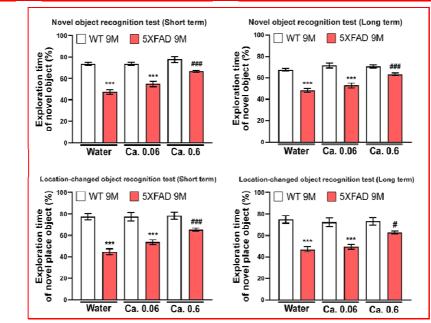
- 프로트롬빈 도메인의 일부인 프로트롬빈 크링글-2의 생성을 직접적으로 억제하고자 리바록사반(Factor Xa inhibitor)을 활용하여 연구를 진행하였다. 그 결과 프로트톰빈 크링글-2 생성 억제를 알츠하이머병 동물모델에서 확인할 수 있었고 알츠하이머병 동물모델에서 나타나는 신경염증 및 물체 인지 행동 장애도 크게 개선됨을 확인했다.
- 알츠하이머병 동물모델에서 나타나는 특징 중 하나인 아밀로이드 베타 축적에 프로트롬빈 크링글-2 과발현이 영향을 미치는지 추가적으로 확인하기 위해 대뇌 해마에 프로트롬빈 크링글-2 단백질을 인위적으로 주입을 하였다. 그러나, 프로트롬빈 크링글-2 주입에 의한 과발현은 아밀로이드 베타 축적에 영향을 미치지 않는다는 것을 확인했다.
- 결론적으로 본 연구결과들은 대뇌에서 프로트롬빈 크링글-2 발현이 주요 신경염증을 일으키는 기전중 하나임을 나타내며, 프로트롬빈 크링글-2의 대뇌 발현을 제어하는 것이 알츠하이머병 예방하고 병증을 개선하는데 도움이 될 것으로 판단된다.

3. 기대효과

- 본 연구결과는 알츠하이머병과 연관될 수 있는 신규 유력 내인성 미세아교세포 활성 유도인자 규명 및 관련 인자의 활성을 조절하는 기전연구의 결과물로 알츠하이머병을 포함하는 퇴행성 뇌질환의 치료전략 수립에 많은 정보를 제공할 수 있을 것으로 기대된다.
- 이러한 결과물들은 아직 실질적인 치료제가 없는 퇴행성 뇌질환과 연계된 바이오의약 산업에도 많은 정보를 제공하여 임상활용을 위한 추가적인 연구방향 구축에 도움이 될 것으로 기대된다.

그림 설명

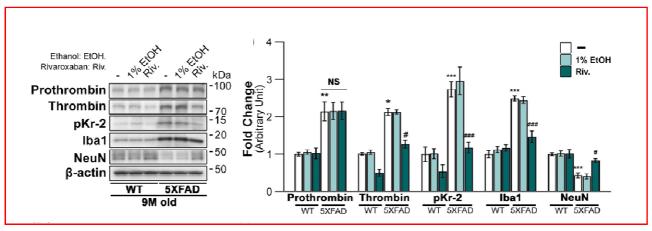


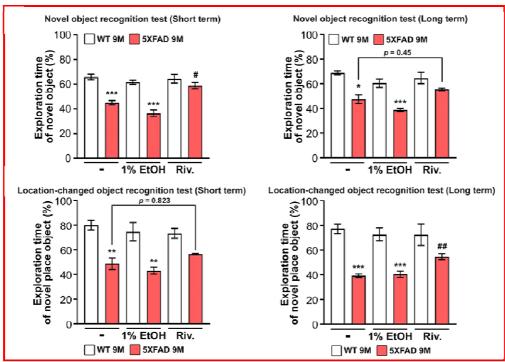

(그림 1) 알츠하이머병 및 알츠하이머병 동물모델(5XFAD) 해마에서 프로트롬빈 크링글-2 발현 증가

(상) 알츠하이머병 환자 뇌 내 해마 부위에서 같은 나이대 정상인 뇌 내 해마와 비교하여 프로트롬빈 크링글-2 단백질 발현의 증가를 확인함. 또한, 알츠하이머병 환자 뇌 내 해마 부위에서 신경염증 관련 단백질 발현 증가도 함께 확인함.

(하) 알츠하이머병 동물모델에서도 프로트롬빈 크링글-2 이외에 신경염증 관련 단백질 발현 증가를 확인 할 수 있었음.

그림설명 및 그림제공 : 경북대학교 김상룡 교수

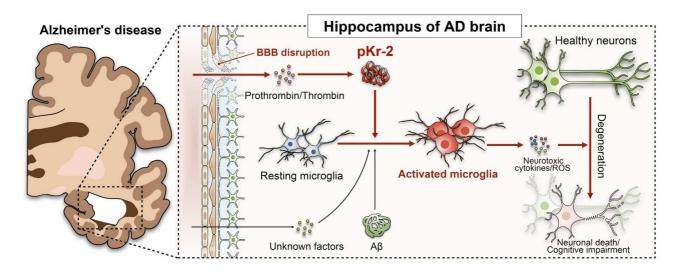




(그림 2) 알츠하이머병 동물모델에서 프로트롬빈 크링글-2 뇌 내 유입 억제를 통한 해마 신경시스템 보호 효과

- (상) 알츠하이머병 동물모델에 카페인을 공급하여 뇌혈관장벽을 강화, 프로트롬빈 크링글-2 뇌 내 유입을 저해함.
- (하) 알츠하이머병 동물모델에서 프로트롬빈 크링글-2 뇌 내 유입 억제를 통한 물체 인지 장애 개선 확인함.

그림설명 및 그림제공 : 경북대학교 김상룡 교수



(그림 3) 알츠하이머병 동물모델에서 프로트롬빈 크링글-2 생성 저해를 통한 해마 신경시스템 보호 효과

- (상) 알츠하이머병 동물모델에 리바록사반 투여를 통한 프로트롬빈 크링글-2 생성을 저해함.
- (하) 알츠하이머병 동물모델에서 프로트롬빈 크링글-2 생성 억제를 통한 물체 인자 장애 개선 확인함.

그림설명 및 그림제공 : 경북대학교 김상룡 교수

(그림 4) 연구결과 모식도

연구를 통해 알츠하이머병 환자에서 보여지는 뇌혈관장벽의 붕괴는 프로트롬빈 크링글-2와 같은 혈액 유래 단백질의 대뇌 유입으로 이어지고 유입된 대뇌 프로트롬빈 크링글-2는 신경시스템 손상을 일으킬 수 있는 과도한 미세아교세포 활성과 뇌염증을 유도하는 대표적인 내인성 인자임을 확인하였다. 이러한 결과는 뇌혈관장벽의 강화를 통한 뇌염증 제어 혹은 뇌혈관장벽 손상이 있더라도 미세아교세포 활성을 유도할 수 있는 특정한 혈액 유래 단백질의 생성억제가 알츠하이머병 예방 및 병증 개선에 크게 도움될 수 있음을 말한다.

제 1저자(김형준 책임연구원) 이력사항

1. 인적사항

ㅇ 이 름 : 김형준

○ 소 속 : 한국뇌연구원 치매연구그룹

○ 전 화: 053-980-8380

o E - mail : kijang1@kbri.re.kr

o (홈페이지) http://www.kbri.re.kr/new/pages_la

b/sub/page.html?mc=2062

2. 학력 및 경력사항

○ 2013 ~ 현재 한국뇌연구원 선임, 책임연구원

○ 2008 ~ 2013 미국 펜실베니아 대학교 생명공학과, Post-Doc

○ 2007 ~ 2008 서울대학교 미생물학과, Post-Doc

○ 2000 ~ 2007 서울대학교 생명과학부 박사 (Ph.D)

3. 전문 연구분야

- ㅇ 신경퇴행성 질환 병인 기전 정밀 분석을 통한 진단-치료 타겟 발굴
- o 신규 퇴행성 뇌질환 동물 모델 개발 및 분석

제 1저자(김도근 선임연구원) 이력사항

1. 인적사항

- ㅇ (이름) 김도근
- ㅇ (소속) 한국뇌연구원 치매연구그룹
- (전화) 053-980-8340
- o (E-mail) kimvet0911@kbri.re.kr
- (홈페이지) https://sites.google.com/view/neuroimmunologylab/neuroimmunology-lab?authuser=0

2. 학력 및 경력사항

- 2016 ~ 현재 한국뇌연구원 치매연구그룹 선임연구원
- 2015 ~ 2016 미국 코넬대학교 수의과대학 박사 후 연구원
- 2010 ~ 2015 미국 코넬대학교 수의과대학 박사

3. 전문 연구분야

- o 뇌혈관 장벽 구조 및 기능 연구
- ㅇ 뇌내 약물 전달 증진 기술 개발
- ㅇ 혈관 기능 장애성 치매 연구

제 1저자(김재광 선임연구원) 이력사항

1. 인적사항

- (이름) 김재광
- ㅇ (소속) 한국뇌연구원 치매 연구 그룹
- ㅇ (전화) 053-980-8390
- o (E-mail) kim_jaekwang@kbri.re.kr
- (홈페이지) http://www.kbri.re.kr/new/pages_lab/sub/page.html?mc=4003

2. 학력 및 경력사항

- ㅇ 2017 ~ 현재 한국뇌연구원 선임연구원
- o 2017 미국 메이요 클리닉 의과대학, Assistant Professor
- 2013 ~ 2017 미국 메이요 클리닉 의과대학, Post-Doc
- o 2010 ~ 2013 미국 와싱턴대학교 의과대학, Post-Doc
- 2009 ~ 2010 미국 미네소타대학 의과대학, Post-Doc
- 2008 ~ 2009 미국 존스홉킨스대학 의과대학, Post-Doc
- o 2001 ~ 2007 서울대학교 생명과학 이학박사 (Ph.D.)

3. 전문 연구분야

- ㅇ 퇴행성 뇌질환, 알츠하이머 치매
- ㅇ 분자신경병리 연구
- ㅇ 치매 치료 타켓 발굴 연구

교신 저자(김상룡 교수) 이력사항

1. 인적사항

○ 소 속 : 경북대학교

○ 전 화 : 053-950-7362

○ e-mail : srk75@knu.ac.kr

2. 학력

○ 2006년 ~ 2008년 Columbia University, Postdoctoral Research Scientist

○ 2002년 ~ 2006년 아주대학교 신경과학협동과정 이학박사

○ 1994년 ~ 2002년 아주대학교 생명과학과 이학사

3. 경력사항

○ 2021년 ~ 현재 (경북대학교 생명과학부 교수)

○ 2020년 ~ 현재 (경북대학교 자연과학대학 부학장)

○ 2019년 ~ 2021년 (경북대학교 뇌과학연구소 소장)

○ 2016년 ~ 2021년 (경북대학교 생명과학부 부교수)

○ 2012년 ~ 2016년 (경북대학교 생명과학부 조교수)

○ 2008년 ~ 2011년 Columbia University, Associate Research Scientist

4. 전문분야 정보

- 퇴행성뇌질환
- 유전자치료
- 신경퇴화/보호

5. 연구지원 정보

○ 2020년 ~ 현재 과학기술정보통신부・한국연구재단 중견연구자지원사업

