2002년도 뇌연구촉진시행계획

2002. 4.

과 학 기 술 부 보 건 복 지 부 교육인적자원부 산 업 자 원 부 정 보 통 신 부

목 차

I. 개 요 ························1
1. 계획수립의 근거 및 경위1
2.「뇌연구촉진기본계획」주요내용2
Ⅱ. 뇌연구 동향 ···································
1. 국가별 연구동향6
2. 분야별 연구동향 ····································
Ⅲ. 2002년도 뇌연구촉진시행계획 ·············· 12
1. 중점 추진방향12
2. 투자계획(총괄표)13
3. 부처별 사업계획14
가. 과학기술부14
나. 보건복지부23
다. 교육인적자원부26
라. 산업자원부28
마. 정보통신부31
<붙임> 1. 뇌신경생물학연구사업(과학기술부) 세부 내용 35
2. 뇌신경정보학연구사업(과학기술부) 세부 내용 35
3. 뇌의약학연구사업(보건복지부) 세부 내용 37

I. 개 요

- 1. 계획수립의 근거 및 경위
- □ 법적 근거
 - ▶ 뇌연구촉진법에 의하여 과학기술부장관은 관계중앙행정 기관의 뇌연구 촉진을 위한 계획을 종합·조정한 후 「뇌연구촉진심의회」의 심의를 거쳐「뇌연구촉진기본계획」을 수립(동법 제5조)
 - 관계중앙행정기관의 장은「뇌연구촉진기본계획」의 시행을 위하여 매년「뇌연구촉진시행계획」을 수립(동법 제6조)

※관계중앙행정기관: 교육인적자원부, 과학기술부, 산업자원부 (동법 제2조제5호) 정보통신부, 보건복지부

□ 주요 경위

- 1997. 9 뇌연구개발사업 기본계획 수립
- 1998. 5 "뇌연구촉진법" 제정
- 1998.11 "뇌연구촉진법시행령" 제정
- 1999. 7「뇌연구촉진기본계획('98~2007)」최초수립
 - 2000.2 「2000년도 뇌연구촉진시행계획」수립
 - 2001.3 「2001년도 뇌연구촉진시행계획」수립
- 2001.12 「뇌연구촉진기본계획('98~2007)」수정
 - 뇌연구 국제동향 및 우리 나라의 여건변화 등을 고려하여 사업목표, 단계별 목표, 추진전략등을 재검토하여 뇌연구 촉진을 위한 국가 연구개발정책의 기본틀을 확립

2002년은「뇌연구촉진기본계획」2단계(2001~2003)의 2차년도의 해

2. 「뇌연구촉진기본계획」주요내용

□ 기본목표

뇌의 이해

신경생물학과 뇌인지과학적 연구를 통한 뇌구조와 기능 이해

뇌질환 예방·극복

뇌·신경질환의 예방 및 치료 기술 개발

뇌정보처리 응용·구현

음성, 시각, 추론 및 행동 등 인간의 지적기능을 가진 지능형 시스템 구현 및 응용

- 2007년까지 뇌연구 일부 분야에서 세계적 경쟁력 확보
 - 뇌신경질환의 예방·치료 기술 개발
 - 뇌 응용ㆍ구현의 핵심기반기술 확립
- ⇒ 산업발전 및 복지증진에 기여

□ 단계별 목표

제1단계 (1998-2000)

- 뇌연구의 핵심기초기술 확보 및 인력 양성
 - 뇌에 관한 기본적 이해 및 뇌정보처리에 기반한 지능정보 처리 기반기술 확립

제2단계 (2001-2003)

- O 뇌연구 기반의 확장 및 응용기반기술 확보
 - 기초 기반기술의 심화 및 뇌질환 예방·치료기술 개발 연구 확산과 뇌정보처리를 모방한 지능시스템 및 응용기술 확보

제3단계 (2004-2007)

- 뇌연구의 실세계 응용 및 선진화
 - 뇌질환 예방·치료제의 개발
 - 뇌정보처리를 응용한 Digital Brain 구현

□ 중점 연구개발 내용 및 핵심과제

분 야	중점 연구개발내용	핵심 연구개발 과제
	뇌기능연구를 위한 기반기술개발	○생체내 이미징: 신경조직의 나노미터 단위 실시간 측정법 등
뇌의 신경	뇌기능 가소성(Plasticity) 이해	○학습과 기억의 신경생물학적 메커 니즘 규명 등
생물학적 이해	신경시스템 구조와 고등신경시능 이해	○감각-운동 조절 통합계의 생물학적 분석 등
	뇌 기능유전자 연구를 통한뇌가능향상(Smart Brain)	○뇌의 각 영역에서 발현되는 유전자 발굴 및 기능 규명 등
	뇌신경질환의 기전 규명 및 진단 연구	○뇌신경질환의 병인기전 규명 연구 ○뇌신경질환의 검색, 진단 기술 개발 등
뇌질환 예방 및 극복	신경세포 재생 및 기능 증진	○손상된 신경세포의 세포사 억제기술 연구 등
	뇌질환 예방 및 치료제 개발	○뇌신경질환 예방약 개발 ○뇌신경질환 치료기술 개발 등
	신경줄기세포 연구	○신경줄기세포의 분화 과정 연구 ○분화된 신경세포의 이식술 개발 등
	뇌신호 측정 및 분석기술 연구	○뇌신호의 인지신경과학적 측정기술 개발 등
	뇌정보처리에 기반한 인공시각 시스템 개발	○인간시각계 신호처리 메카니즘의 이해 및 모델링 연구 등
뇌정보 처리	뇌정보처리에 기반한 인공청각 시스템 개발	○인간청각계 신호처리 메카니즘의 이해 및 모델링 연구 등
기 디 이해 및 응용	뇌의 학습/기억/추론/언어 기능 이해 및 구현	○학습/기억 유형별 정보처리 원리규명 및 모델링 등
	행동의 뇌정보처리적 이해 및 구현	○신경계의 통신 및 제어 기전 ○계획모형 및 구현 등
	뇌기능 모방 멀티미디어 처리기술 개발 및 "디지털 브레인" 개발	○5감을 이용한 인간기능시스템(디지털 브레인) 개발 등 ○뇌기능 모듈 통합 기술 개발

□ 뇌연구 추진체계

[기본체계]

정보통신부

- 정부는 관련 부처간 협력을 통한 범부처적 **뇌연구촉진기본** 계획을 수립하며, 과학기술부가 이를 종합·조정
 - 국가차원의 대형 신설과제들과 연계된 뇌연구개발 지원체제 확립
- **뇌연구촉진심의회** 및 **뇌연구실무추진위원회**를 통하여 기본 계획의 수립 등 주요 정책 심의
- 민간의 연구참여 여건이 성숙될 것으로 예상되는 제3단계에 산·학·연의 **뇌연구개발 연구망** 운영 및 **콘소시움**을 구성

[**부처별 역할** (뇌연구촉진법 제14조)]

과학기술부	○연구개발사업 주관 및 부처간 정책조정 ○기본계획의 수립과 시행계획 수립의 지원 및 조정 ○뇌 관련 중형기반기술 및 산업화에 필요한 중형/대형 핵심 원천기술의 개발 ○유용한 연구결과의 이용 및 보전을 위한 정보이용의 지원
보건복지부	○뇌의약학 분야의 주관부처 ○보건·의료 등에 관련되는 뇌의약학 연구와 그 결과의 응용기술 개발 및 산업화 촉진
	스킨레카 크스포크크케 시나 미 카이스 트린 디션크립시시
교육인적자원부	○학제간 교육프로그램 신설 및 지원을 통한 뇌연구분야의 전문인력 양성 ○뇌과학 기초분야의 다양한 연구지원
산업자원부	○뇌연구 결과를 생산 및 산업공정에 효율적으로 응용하기 위한 응용기술의 개발 및 산업화 촉진

산업화 촉진

○뇌연구 결과의 정보·통신분야에의 응용기술 개발 및

□ 투자계획

○ 10년간('98~2007) 총 4,106억원 투자 예정

- 과학기술부 등 5개 관계부처 : 2,986억원

- 민간 : 1,120억원

[단계별·부처별 투자계획]

(단위: 억원)

구 분	1단계 실적 (1998-2000)	2단계 계획 (2001-2003)	3단계 계획 (2004-2007)	합 계
과학기술부	185*	400	615	1,200
보건복지부	55	208	602	865
교육인적 자원부	53	110	179	342
산업자원부	37	100	173	310
정보통신부	87	90	92	269
정부 계	417	908	1,661	2,986
민간 계	19	248	853	1,120
합 계	436	1,156	2,514	4,106

^{*} 과학기술부 1단계 투자실적은 중점국가연구개발사업의 실적임.

Ⅱ. 뇌연구 동향

1. 국가별 연구동향

□ 미국

○ 국립보건원(NIH)은 1990년 1월 의회가 선언한「Decade of the Brain」을 실천하기 위해 뇌연구에 대규모 연구비 투자

연 도	1999년도	2000년도	2001년도
투자액	31억불	32억불	34억불

- 인간두뇌연구프로젝트(Human Brain Project)를 추진중이며 국립신경과학연구소 신축중
- 국립신경질환 및 뇌졸중 연구소(NINDS)에서는 "새천년을 위한 신경과학(Neuroscience at the New Millennium)"이라는 연구 계획 실행안(인지 및 행동연구 등)을 발표(2000. 5)
- 국립정신건강연구소(NIMH)에서는 BMAP(Brain Molecular Anatomy Project)으로 중추신경계 유전자의 DNA칩 개발 등 분자신경생물학과 생물정보학의 학제간 연구에 착수
- 뇌기능영상을 위한 학제적 연구를 지원하기 위해 National Institute of Biomedical Imaging and Bioengineering(NIBIB) 신설(2001.4)
- 과학재단(NSF)의 2001년도 주요 예산증액 4개 항목에 뇌과학과 관련된 인지추론 모듈이 포함
 - NIH와 공동으로 신경과학과 정보과학의 융합인 계산신경과학 (Computational Neuroscience) 연구사업 시작(2001.11)
- 민간부분에서도 관련 연구를 적극 추진중
 - MIT가 뇌연구를 위해 향후 20년간 350만불의 기부약정 체결(2000. 2), 바이오 벤처에서 신경과학 기술개발과 신경질환치료제 개발 참여 등

□ 일 본

○ 문부과학성은 이화학연구소 소속 뇌과학종합연구소에 매년 약 100억엔을 투자하여 뇌의 이해·보호·창조를 추진

연 도	1999년도	2000년도	2001년도
투자액	88억 엔	112억 엔	118억 엔

- "뇌의 창조" 분야에 뇌기반 계산구조 연구그룹과 뇌기능 지능시스템 응용 연구그룹 신설(2000. 7)
- 민간기업들은 뇌신경질환 치료제 개발, 인공지능을 활용한 로봇개발 및 신경회로망칩의 개발 등에 적극적 투자
 - -「에자이사」는 치매치료제를 개발하여 시판중
 - 「소니」와「마쓰시타」는 보고, 듣고, 말하는 애완물(AIBO)과 환자 및 노약자 간호 로봇(타파미) 개발
 - 「히타치」, 「마쓰시타」는 수 만개의 시냅스를 연결한 정도의 Neural Network VLSI 개발

□ 유 럽

- 유럽공동체(EU)도 미국의「Decade of the Brain」에 자극받아 1991년「European Decade of the Brain」선언
- 뇌연구와 분자생물학연구가 주요 연구분야인 인간프론티어 과학프로그램 (Human Frontier Science Program)에 G7 국가들 적극 참여
- 영국은 MRC(Medical Research Council), 프랑스는 INSERUM, 독일은 Max-Planck Institute를 통하여 신경과학 연구에 집중 투자

- 스위는 Zurich 대학에 Institute of Neuroinformatics(INI) 설립
- 네덜란드는 Nijmegen Institute for Cognition and Information 에서 시각정보처리의 심리학적, 신경생물학적 원리 규명 연구

□ 국제협력

[OECD 세계과학포럼(Global Science Forum)]

- 신경정보학(Neuroinformatics) Working Group 발족
 - 미국, EC, 일본, 한국 등 19개국 참여
 - 2000년부터 7차례 회의를 개최하였으며, 2002년 4월에 최종 보고서 제출 예정
- 신경과학과 정보과학의 결합 및 범세계적인 신경정보 데이터 베이스의 구축을 제안

[기타 국제협력]

- 일본 RIKEN 뇌연구소(BSI)와 우리 나라의 뇌과학연구센터 및 뇌의약학연구센터 간의 협력각서 교환 (1999.10.6)
 - 공동 워크샾, 인력교류 및 공동연구 추진
 - 2001년부터는 한・일・중 3국 공동워크샵으로 확대
- 한·미 공동워크샵 개최(1999, 서울; 2000, 대전)
- 아시아-태평양 국제신경과학회 개최(1999, 서울)
- 제1차 fMRI 국제공동 워크샵 개최(2001, 대전) 및 뇌기능을 주제로 한·독 국제심포지움 공동개최(2001, 독일)
- 스위스 신경정보학연구소(Institute of Neuroinformatics)와 우리나라 뇌과학연구센터간 공동연구를 위한 협력각서 교환 (2001.5)
- 아시아-오세아니아 신경과학회(FAONS) 개최예정(2002, 서울)

2. 분야별 연구동향

□「뇌의 신경생물학적 이해」분야

- 뇌과학분야에서 2000년도 노벨 생리의학상 수상
 - 신경세포에서 신호전달의 분자적 원리를 규명한 알비드 칼슨,폴 그린가드, 에릭 칸델이 수상함.
- 뇌 신경발생과 신경가소성의 심층적 이해 증진
 - 뇌실 주변의 줄기세포가 성인 뇌에서도 계속 분열하여 신경 세포를 만들어내는 것이 밝혀지면서 신경세포 이식술의 개발 가능성이 제고 (Nature, Science)
 - 신경축색돌기의 재생에 중요한 유전자인 Nogo의 수용체 발견 (Nature, 2001)
 - 해마의 장기기억 모델인 LTP 형성에 필요한 과정인 전사, 번역과 연관되는 물질 파악을 위한 노력이 가중되고 있으며 LTP에서 시냅스 수의 증가가 in vitro에서 확인 (Science, 2001)
- 신경발생, 분화, 가소성 연구 등에 DNA chip, 단백질 chip, time-lapse microscope 등 첨단기자재가 활발히 사용되는 추세
- 신경신호전달의 분자적 기작 규명
 - Alpha-adrenergic receptor와 L-type calcium channel이 서로 상호작용과 신호전달을 조절할 수 있는 kinase와 phosphatase와 함께 복합체를 이루고 있음을 증명 (Science, 2001)
 - 신경세포 활동전위의 생성경위와 이온 선택성에 대한 분자 기전이 확인되어 분자수준에서 이온채널 기능 제어에 의한 중추신경 유전병의 원인규명과 치료 가능성 제시 (Nature, 2001)
- 일단의 영국과학자들은 언어장애를 나타내는 환자의 유전자 분석 결과, 인간의 말과 언어에 중요한 유전자 FOXP2를 발견 (Nature, 2001)

□「뇌정보처리 이해 및 응용」분야

- MIT Technology Review (2001년 1,2월호)에서 선정한 "경제와 인간 사회에 큰 영향을 주는 10대 부상기술" 중 4개가 뇌공학에 관련
 - 뇌와 기계의 인터페이스
 - 생체정보(Biometrics; 얼굴인식, 음성인식 등)
 - 자연어처리(인지추론의 한 분야)
 - 자료탐색(Data Mining; 인지추론의 한 분야)
- 뇌기능을 응용한 초기형 인간기능 시스템 출현
 - 미국·일본 등은 가정용 경비로봇, 서비스로봇, 애완용 로봇 등의 초기 모델을 개발·시판
- 뇌-컴퓨터 인터페이스 기술 발달
 - 병렬 뇌신경활성도 측정기술이 발달함에 따라 뇌-컴퓨터 인터페이스 기술이 급속도로 발전하여, 원숭이 뇌에 전선을 연결하여 로봇팔 구동에 성공(Nature, 2000)
- 고등인지기능에 관한 신경생물학적 해석 증진
 - fMRI(뇌기능자기공명영상장치)를 이용하여 시각계에서 특정한 방향성분에 반응하는 작은 세포들의 집단(subcolumn)을 발견 (Nature Neuroscience, 2000)
 - 보는 것과 생각하는 것이 동일한 뇌작용임을 확인하고, 사람의 생각 현상을 fMRI를 이용해서 파악(Journal of Cognitive Neuroscience, 2001)
- 국내에서도 신경회로망 기법을 도입한 상품의 출현
 - 「푸른기술」의 위조지폐감식기,「한국엑시스」의 음성인식 기능 장난감, 필기체 문자인식 시스템을 이용한 금융기관의 전표 자동처리기 등
 - 인간청각모델을 응용한 잡음에 강한 음성인식 칩 기업화(2000)

□「뇌질환 예방 및 극복」분야

- 뇌질환 관련 유전자에 관한 연구가 활발히 진행
 - 주요 퇴행성 질환인 알츠하이머병, 헌팅턴병, 파킨슨씨병, 소뇌실조 등의 원인 유전자가 속속 규명
 - 최근에는 Human Genome Project의 결과로 간질, 알츠하이머병, 다운증후군의 발병에 깊은 관련이 있는 21번 염색체의 염기서열이 완전히 밝혀짐에 따라 뇌 특이 유전자의 기능연구가 본격화
 - 미국의 스템셀스사는 인간 뇌의 줄기세포를 쥐에서 배양하는 방법을 개발(2001)

○ 뇌질환 치료제 개발

- 미국 노바티스사, 일본 에자이사, 벨기에 얀센 등은 신경세포간 교신에 중요한 화학물질을 조절하여 알츠하이머병 환자의 인식기능저하를 감소시키는 치매 치료제를 개발하여 시판
- 여성호르몬인 에스트로겐이 파킨스씨병 예방 효과가 있음을 확인 (Journal of Neuroscience, 2000)
- 국내에서도 뇌의약학분야 연구개발 성과 대두
 - 생약성분으로부터 치매를 비롯한 퇴행성 뇌질환의 치료제 개발 및 임상시험 (제일약품)
 - 허혈성 뇌손상 메카니즘을 규명하여 저명한 해외학술지인 "Science"에 발표
 - 인간과 동일한 치매증세를 보이는 실험쥐를 세계최초로 개발 (식품의약품안전청, 2002)

Ⅲ. 2002년도 뇌연구촉진시행계획

1. 중점 추진방향

□ 주요 연구사업의 안정적 추진기반 마련

○ 중점국가연구개발사업이 2002년에 종료되므로, 그간 동 사업으로 추진해 온 뇌연구관련 단위사업들을 국책연구개발사업으로 이관하여 안정적 사업추진 기반 마련 (뇌신경생물학연구사업・ 뇌신경정보학연구사업・뇌의약학연구사업)

□ 사업간 역할분담 및 연계체제 강화

- 사업간 역할분담 및 차별화
 - 국책연구개발사업 등 사업단 사업: 장기적 계획으로 추진하고 사업단별 구체적·정량적 목표를 설정하여 목표지향적으로 운영
 - 기타 창의·기초과학 등 : 뇌과학 핵심요소기술개발 등을 위해 과제별로 목표를 탄력적으로 설정하여 자유롭게 추진
- 연구자간 및 연구팀간 기술정보교류 활성화
 - 뇌과학자·뇌의약학자·뇌공학자간 정보교류를 통한 시너지 효과 극대화를 위해 (가칭)「뇌연구협의회」구성 및「뇌연구 허브 홈페이지」구축 추진

☐ 뇌연구의 장기·대형 사업화 타당성 검토

- ○「뇌연구촉진기본계획」을 체계적·효율적으로 추진하기 위해 21세기 프론티어사업 등의 장기·대형사업으로 추진하는 방안에 대한 타당성 검토
 - 산발적으로 수행되고 있는 뇌연구를 목표지향적으로 재구성 하여 21세기 프론티어사업 후보사업 발굴

2. 투자계획(총괄표)

관계부처	사	업	명	사업기간	2001실적	2002계획
과학기술부	일부	보학연 연구사 중 일 연구시 구진흥	구사업* 업* 부 -업 중 -사업 중	'98~2007 '98~2007 '98~2007 '89~계속 '78~계속 '97~계속	2,295 2,581 850 908 3,300 3,950 2,326	2,250 2,800 850 890 3,300 [†] 3,950 [†] 2,326 [†]
	소	계			16,210	16,366
보건복지부	○뇌의약학	연구시	- 업	′98~2007	2,680	3,656
교육인적 자원부	○기초과학 및 선도연 등 일부			′98~계속	2,400	2,400
산업자원부	○차세대신 및 공통핵 중 일부			′98~2007	1,695	1,724
정보통신부	○정보통신 사업 중		술개발	′98~2007	3,000	3,000
		계			25,985	27,146

^{*2001}년도까지 중점국가연구개발사업으로 수행, 2002년도부터는 국책연구 개발사업으로 전환하여 수행

^{*} 각 사업별 2002년도에 신규선정, 연구종료 또는 탈락 등에 따라 금액변동

3. 부처별 사업 계획

가. 과학기술부 (뇌과학, 뇌공학)

[현황 및 추진실적]

□ 사업개요

○ 사업목표 : 인간뇌·신경계의 구조와 기능을 이해하고 이를 바탕으로 지능정보처리시스템(인공지능)을 개발

○ 총연구기간 : '98 ~ 2007년

○ 총연구비 : 857억원

○ 사업내용 : 목표지향의 국책연구사업과 자유로운 연구가 가능한 창의・NRL・SRC 등으로 구성

- 국책연구개발사업

- 뇌신경생물학연구사업(한국과학기술연구원, 오태환)
- 뇌신경정보학연구사업(한국과학기술원, 이수영)
- 뇌의약학연구사업(보건복지부 주관)
- 창의적연구진흥사업
 - 세포사멸연구단(고려대, 최의주), 인공시각연구단(고려대, 이성환) 등 9개 연구단 지원
- 국가지정연구실사업(NRL)
 - 단백질치료연구실(한림대, 최수영), 발생 및 신경내분비학 연구실(서울대, 김경진) 등 10개 연구실 지원

- 우수연구센터(SRC)

• 뇌질환연구센터(아주대, 김승업) 지원

- 목적기초연구사업

• 연합기억과 내측 측두엽의 활성화 등 뇌연구분야 35개 단위과제 지원

○ 연구비 투자실적

사업	연도	1999	2000	2001	계
	뇌신경생물학	5,000 6,372	6 272	2,295	16,248
중점 사업	뇌신경정보학		0,572	2,581	10,240
	뇌의약학	900	828	850	2,578
기초	우수연구센터 (SRC)	845	940	908	2,693
뇌과학	목적기초연구 사업	864	1,954	3,300	6,118
기타	창의사업	1,610	1,810	3,950	7,370
뇌연구	NRL	334	291	2,326	2,951
	계	9,553	12,195	16,210	37,958

- 참고 1) 중점사업은 2002년부터 국책연구개발사업으로 이관
 - 2) 중점사업중 뇌의약학사업은 과학기술부에서 뇌의약학연구사업 단에 지원하며 보건복지부 주관으로 추진
 - 3) 중점사업중 뇌과학사업을 2001년부터 뇌신경생물학사업과 뇌신경정보학사업으로 분리
 - 4) 창의, NRL, 우수연구센터, 목적기초 등은 2001년부터 뇌연구 종합관리 및 통계작성에 포함

[2002년도 사업 계획]

국책 뇌신경생물학연구사업

□ 사업개요

- 주관부처 : 과학기술부
- 주관연구기관: 한국과학기술연구원 뇌신경생물학연구사업단
- 총연구기간 : '98 ~ 2007 (10년)
- 사업목표 및 주요 내용
 - 신경계의 구조와 기능의 종합적인 이해(유전자에서 행동까지)와 뇌정보 처리 응용 및 뇌질환 극복을 위한 신경생물학적 기반 제공

□ 주요성과

- 시냅스 단백질 PSD-95의 PDZ domain의 단백질 구조결정
- O Retinoic acid에 의해 신경세포로 분화시 PGE2 작용 및 EP2 수용체 증가 규명
- 감정의 발현 및 기억을 담당하는 편도체(amygdala)에서 R-type calcium channel이 공포 발현 조절에 관련 규명
- C/EBP가 군소 모델에서 단기기억을 장기기억으로 전환 입증
- 말초 전정수용체의 이상이 어지럼증에 관여함을 규명, 순환계 환자에서 어지러움증에 대한 치료법을 개발할 수 있는 기반 확보
- 해마의 뇌파가 시냅스의 가소성과 연관을 규명
- fMRI로 실행증(apraxia)의 좌뇌 전운동영역과 두종소엽 연관성 규명

□ 2002년도 계획

- 주요 연구 내용
 - 신경계의 발생, 사멸 및 재생 연구
 - 신경전달물질, 수용체 등 신호전달체계 연구
 - 학습과 기억에 관련되는 시냅스 가소성 연구
 - 신경시스템의 구조와 통합조절 연구
 - 고등신경기능 및 행동 연구
- 당해 연도 연구비 : 2,250 백만원 ('02.6.1~'03.5.31)
- 주요 추진 일정
 - 2002. 4 : 연구성과 평가
 - 2002. 5 : 진도관리 및 계속과제 선정
 - 2002. 6 : 협약체결 및 연구수행

□ 소요예산 조달계획

(단위:백만원)

연 도	'98~2001	2002	2003~2007	계
투자액	9,475	2,250	21,862	33,587

※ '98~2000년도는 중점 뇌과학연구사업비중 일부로, 2001년도는 중점 뇌신경생물학연구사업비로 지원

국책 뇌신경정보학연구사업

□ 사업개요

○ 주관부처 : 과학기술부

○ 주관연구기관 : 한국과학기술원 뇌신경정보학연구사업단

- 총연구기간: '98 ~ 2007
- 사업목표 및 주요 내용
 - 뇌정보처리 메카니즘에 기반한 지능정보처리시스템(인공두뇌) 개발
 - 인간처럼 보고(인공시각), 듣고(인공청각), 생각하고(인지 및 추론), 행동하는(인간행동) 기능을 연구

□ 주요성과

- 신경신호의 시간적 정보코딩을 활용하는 특징추출 및 결합모듈 simulator 및 analog 회로 구현
- 기존 방법보다 15% 이상 인식률을 향상시킨 청각모델 및 음성인식칩을 개발하여 기업화
- 암묵 외현 기억의 해리가 성인과 아동에게 모두 나타남을 밝힘으로써 두 기억개체간의 독립성을 입증
- 색상감지 분자생물 소자 개발
- 뇌기능 측정을 위한 fMRI 장치의 가동('01.7)과 EPI 등 뇌기능 측정방법의 정립으로 뇌연구기반 확립

□ 2002년도 계획

- 주요 연구 내용
 - fMRI 시스템에 광연결 EEG를 도입하여 동시 측정시스템 구성
 - 중대형 시각칩과 청각칩 제작 및 디지털 브레인 시스템 구성을 위한 성능 평가
 - 인공시각, 인공청각, 인지추론, 인간행동 각 모듈별 시스템 통합 연구

○ 당해 연도 연구비 : 2,800 백만원 ('02.6.1~'03.5.31)

○ 주요 추진 일정

- 2002. 4 : 연구성과 평가

- 2002. 5 : 진도관리 및 계속과제 선정

- 2002. 6 : 협약체결 및 연구수행

□ 소요예산 조달계획

(단위: 백만원)

연 도	′98~2001	2002	2003~2007	계
투자액	12,632	2,800	43,000	58,432

※ '98~2000년도는 중점 뇌과학연구사업비중 일부로, 2001년도는 중점 뇌신경생물학연구사업비로 지원

기초뇌과학연구사업(SRC·목적기초 중 일부)

□ 사업개요

○ 주관부처 : 과학기술부

○ 주관연구기관 : 한국과학재단

○ 총연구기간 : '78 ~

○ 사업목표 및 주요 내용

- 우수연구센터 : 산재한 우수연구인력을 특정 분야별로 조직화 하여 연구활동에 필요한 제반비용을 지원('89년부터 시행)

- 목적기초연구사업 : 미래지향적인 기초연구영역 중 이·공학 전분야에 대하여 장려금(Grant) 방식으로 지원('78년부터 시행)

□ 주요성과

- 인간 신경줄기세포(stem cell)의 세포주 개발 및 신경세포로 분화하는 기전을 규명
- 인간 신경줄기세포를 뇌졸중, 파킨슨씨병 등 동물모델에 이식

□ 2002년도 계획

- 우수연구센터
 - 아주대 뇌질환연구센터(김승업)를 계속 지원하고 신규 선정되는 연구센터가 있을 경우 지원 추가
- 목적기초연구사업
 - 60개 연구과제(2,509 백만원)를 계속 지원하고 800 백만원 규모의 신규 연구과제 추가
- 주요 추진 일정
 - 2002. 3. ~ 5 : 신규 우수연구센터 선정평가
 - 2002. 6 : 신규 우수연구센터 개소식 및 연구착수
 - 2002. 5 ~ 8 : 목적기초 신규과제 선정평가

□ 소요예산 조달계획

(단위: 백만원)

연 도	′98~2001	2002	2003~2007	계
SRC	3,193	890	미정	미정
목적기초	6,604	3,300	"	"
계	9,797	4,190	"	"

참고) 2002년 SRC 사업 또는 목적기초사업에 추가로 선정될 경우 지원금액 증액

기타 뇌연구사업(창의·NRL 중 일부)

□ 사업개요

○ 주관부처 : 과학기술부

○ 주관연구기관 : 한국과학기술평가원

○ 총연구기간 : '95 ~

○ 사업목표 및 주요 내용

- 창의적연구진흥사업: 창조적인 원천기술개발과 우수연구리더 양성 및 출연기관 우수연구인력의 창의적 연구활동의 안정적 지원으로 연구전념 분위기 조성('95년부터 시행)
- 국가지정연구실사업 : 국가차원의 전략적 핵심기술분야 연구실을 발굴·육성하여 핵심연구역량 강화('99년부터 시행)

□ 주요성과

- 생체내 신호전달과정에서 칼슘농도 조절에 관여하는 다양한 유전자의 적중 생쥐 개발
- 통증유발에 관여하는 켑사이신 채널과 이와 관련되는 활성 물질 발견

□ 2002년도 계획

- 창의적연구진흥사업
 - 학습·기억현상연구단, 중추계시냅스아연연구단, 통증발현연 구사업단. 치매정복연구단 등 9개 연구단 지원
- 국가지정연구실사업
 - 뇌졸중·치매연구실, 신경생물학연구실, 발생·신경내분비학연구실, 분자신경생리학연구실 등 10개 연구실 지원

○ 주요 추진 일정

- 2002. 5 : NRL 단계평가(2000 선정과제) 및 협약(신규·계속)

- 2002. 5 : 창의 신규과제 선정 및 협약

- 2002. 9 : 창의 단계평가(1999 선정과제) 및 협약(계속과제)

□ 소요예산 조달계획

(단위:백만원)

구분 연도	′98~2001	2002	2003~2007	계
창 의	9,290	3,950	미정	미정
NRL	2,951	2,326	"	"
계	12,241	6,276	"	"

참고) 2002년 창의적연구진흥사업·국가지정연구실사업에 추가로 선정될 경우 지원금액 증액

【 과학기술부 뇌연구 투자 실적·계획 총괄표 】

사 업	연 도	′98~2001	2002	2003~2007	계
	뇌신경생물	9,475	2,250	21,862	33,587
국책 사업	뇌신경정보	12,632	2,800	43,000	58,432
	뇌의약학	3,078	850	6,772	10,700
기초	SRC	3,193	890	미정	미정
뇌과학	목적기초	6,604	3,300	"	"
기타	창의	9,290	3,950	"	"
뇌연구	NRL	2,951	2,326	"	"
	계	47,223	16,366	(71,634)	(102,719)

나. 보건복지부 (뇌의약학)

[현황 및 추진실적]

□ 사업개요

○ 사업목표 : 뇌·신경정신질환의 획기적인 예방 및 치료기술 개발을 통하여 국민건강 증진에 기여

○ 총연구기간: '98 ~ 2007년

○ 총연구비 : 1,372억원(복지부 865억원, 과기부 107억원, 민간 400억원)

○ 사업내용: 보건복지부가 주관하고 과학기술부와 공동으로 보건의료기술연구개발사업으로 뇌의약학연구 개발사업 추진

- 사업단과제 : 알쯔하이머 치매를 비롯한 퇴행성 신경질환과 정신분열증, 우울증 등 대표적인 정신질환에 22개 과제

- 자유공모과제

• 중점공동연구과제 : 간질의 예방·진단·치료기술개발 등 6개 과제

• 단독기초연구개발과제 : 22개 과제

○ 연구비 투자실적

구분	연도	′99	2000	2001	계
보건복	-지부	1,980	2,630	2,680	7,290
과학기	술부	900	830	850	2,580
민	간	70	50	680	800
격		2,950	3,510	4,210	10,670

[2002년도 사업계획]

뇌의약학 연구개발사업

□ 사업개요

- 주관부처 : 보건복지부(과학기술부 협조)
- 주관연구기관 : 국립보건원 뇌의약학연구센터(뇌의약학연구 사업단), 보건의료기술연구기획평가단
- 총연구기간 : '98 ~ 2007
- 사업목표 및 주요 내용
 - 뇌·신경계의 생물학적 이해에 기초한 치매·뇌졸중·정신 분열증 등의 신경정신질환의 획기적인 예방 및 치료기술 개발

□ 주요성과

- C단 단백질에 의한 치매 병인기전 규명 및 치료약물 개발
- 치매에서의 세포사멸에 관여하는 신호전달 과정의 규명
- 뇌손상 환자의 통합관리체제 구축과 급성기 환자의 표준 치료법 개발
- 뇌졸중의 응급치료기술에 사용되는 신개념의 뇌영상기술 개발
- 인간과 동일한 치매증세를 보이는 실험쥐를 세계최초로 개발 (식품의약품안전청, 2002.2)

□ 2002년도 계획

- 주요 연구 내용
 - 뇌신경질환 치료에 적용할 수 있는 첨단치료기술(Cellular Therapy, Tissue Engineering, Gene Therapy)의 개발 및 응용기술 연구
 - 주요 뇌질환의 정복을 위한 핵심원천기술의 기반기술 확장
 - 뇌신경세포의 손상 및 재생기전 연구를 통한 새로운 치료기술 개발
 - 뇌졸중, 간질, 통증, 퇴행성뇌질환 등 주요 난치성 뇌신경 질환의 예방, 진단, 치료를 위한 첨단기술의 개발 연구
 - 난치성 뇌신경질환의 치료약물 탐색 및 전임상시험 연구
- 당해연도 연구비 : 5,206백만원(정부 4,506백만원, 민간 700백만원)
- 주요 추진 일정

- 2002. 2 : 2002년도 사업계획 공고

- 2002. 3 : 과제공모 및 선정평가

- 2002. 4 : 사업 진도관리

- 2002. 5 : 협약체결 및 사업수행

□ 소요예산 조달계획

구분	연도	2001	2002	2003~2007	계
보건복지	기부	2,680	3,656	74,810	81,146
과학기술	발	850	850	6,770	8,470
민	간	680	700	38,500	39,880
계		4,210	5,206	120,080	129,496

다. 교육인적자원부 (기초 뇌연구·인력양성)

[현황 및 추진실적]

□ 사업개요

○ 최종목표 : 뇌과학 기초연구 지원

○ 총연구기간 : '98 ~ 2007년

○ 총연구비 : 342억원

○ 사업내용 : 기초과학연구지원사업 · 선도연구자지원사업 등 각 단위사업의 일부로 추진

- 기초과학연구지원사업 : 대학의 기초과학연구 활성화로 과학기술 발전의 원천력 배양 및 국가연구개발의 저변 확대
- 선도연구자지원사업: 연구실적이 우수한 연구자의 창의적 연구를 지원함으로써 연구의욕을 고취하고 연구의 질을 국제적 수준으로 향상
- 협동과제연구지원 : 국제적지역간산학관간 공동연구의 활성 화를 통한 새로운 학문 방향성 제시
- 중점연구소지원 : 연구소의 전문화, 특성화를 통하여 대학 연구소 운영의 내실화와 연구역량 극대화
- 기타 선진교수과제지원사업, 박사후연수과정지원사업, 선진 연구인력장려금지원사업 및 대학교수해외방문연구지원사업

○ 연구비 투자실적

연 도	′99	2000	2001	계
투자액	1,700	2,400	2,400	6,500

[2002년도 사업계획]

기초과학연구지원사업, 선도연구자지원사업 등 일부

□ 사업개요

○ 주관부처 : 교육인적자원부

○ 주관연구기관 : 한국학술진흥재단

○ 총연구기간 : 1998 ~ 계속

□ 주요성과

- 선도연구 등을 통한 뇌과학 관련 연구의 선진화 및 활성화 토대 마련
- 다양한 지원프로그램을 통한 뇌과학 연구 전문인력 양성 및 연구능력 배양

□ 2002년도 계획

- 주요 연구 내용
 - 열충격 단백질 형질 전환 마우스의 뇌허혈 모델에서 기질 분해 효소 단백질의 활성 연구
 - 뇌교세포의 활성화와 세포 사멸의 연관성 및 세포사멸과정의 기전과 신호전달 연구
 - 퇴행성 신경질환에서의 소교세포의 활성기전 : 유전자 발현 및 신호전달체계 연구
- 당해연도 연구비 : 2,400백만원
- 주요 추진 일정

- 2002. 3 : 기초과학연구지원사업 신청 (선정 2002. 6)- 2002. 7 : 선도연구자지원사업 신청 (선정 2002. 7)

□ 소요예산 조달계획

연 도	'98~2001	2002	2003~2007	계
투자액	7,700	2,400	24,100	34,200

라. 산업자원부 (뇌연구 산업 응용)

[현황 및 추진실적]

□ 사업개요

○ 사업목표 : 뇌와 관련된 연구결과를 생산 및 산업공정 등에 효율적으로 적용하기 위한 관련 S/W 등 응용기술 개발

○ 총연구기간 : '98 ~ 2007

○ 총연구비 : 1,030억원(정부 310억원, 민간 : 720억원)

○ 사업내용

- 차세대신기술개발사업(수퍼지능칩 및 응용기술 개발)
 - •지능성 발현을 위한 진화적응 하드웨어 개발
 - 인공 신경망기반의 지능모듈 개발
 - ·지능형 생물정보처리 시스템 개발 등 5개 개발사업
- 공통핵심기술개발사업
 - 대화식 지능형 캐릭터 에이전트 개발 등
- 연구비 투자실적

구분 연도	2000	2001	계
산업자원부	1,648	1,695	3,343
국공립연구소 등	80	102	182
민 간	350	454	804
계	2,078	2,251	4,329

[2002년도 사업 계획]

차세대신기술 슈퍼지능칩 및 응용기술 개발사업

□ 사업개요

○ 주관부처 : 산업자원부

○ 주관연구기관 : 인하대학교

○ 총연구기간 : 2000 ~ 2010

○ 사업목표 및 주요 내용

지능적 특성을 내장하는 고기능의 정보처리시스템을 개발
 하여 생활환경의 정보화 및 자율화에 활용

□ 주요성과

- 유전자알고리즘 프로세스의 FPGA(주문형생산반도체) 구현과 진화하드웨어의 구조설계 완료
- 고기능 디저털 신경망의 설계 완료 및 모델 검증
- 분자연산 컴퓨팅의 모델을 설계·시험
- RF신호에 의한 지능적응제어유닛의 설계
- 감성인식, 센서기술, 자동이동기술 달성

□ 2002년도 계획

- 주요 연구 내용
 - 지능성 발현을 위한 진화적응 하드웨어 개발
 - 인공 신경망기반의 지능모듈 개발
 - 지능형 생물정보처리 시스템 개발 등 5개 개발사업

○ 당해연도 연구비 : 2,409백만원(정부 1,724백만원, 민간 등 685백만원)

○ 주요 추진 일정

- 2002. 2 : 제3차 워크샵 및 기술심의회

- 2002. 3 : 제3차 운영위원회

- 2002. 8 : 제4차 운영위원회

- 2002.12 : 정책간담회

□ 소요예산 조달계획

구분 연도	2001	2002	2003~2010	계
산업자원부	1,695	1,724	17,932	21,351
국공립연구소 등	102	102	1,136	1,340
민 간	454	583	16,613	17,650
계	2,251	2,409	35,681	40,341

마. 정보통신부 (뇌연구 정보통신 응용)

[현황 및 추진실적]

□ 사업 개요

○ 사업목표 : 뇌정보처리 및 신경회로망을 적용한 정보통신 관련

기초기반기술 및 응용기술 개발

○ 총연구기간 : '98 ~ 2007

○ 총연구비 : 269억원

○ 사업내용

- 뇌파 기반 휴먼 인터페이스 개발 등 뇌 정보처리에 기반한 정보통신 기술개발
- 유무선통신 환경하의 뇌공학을 이용한 멀티모드 휴면 인터 페이스 기술 등 신경회로망을 적용한 정보통신 기술개발
- 연구비 투자실적

(단위: 백만원)

연 도	′99	2000	2001	계
투자액	3,300	3,100	3,000	9,400

[2002년도 사업계획]

정보통신선도기술개발사업 중 일부

□ 사업개요

○ 주관부처 : 정보통신부

○ 주관연구기관 : 한국전자통신연구원 및 산업체

○ 총연구기간 : '98 ~ 2007

- 사업목표 및 주요 내용
 - 뇌 정보처리 기반의 정보통신기술 및 신경회로망을 적용한 정보통신기술 관련 응용기술개발 및 구현

□ 주요성과

- 촉각 및 음성 인터페이스 기반의 시각 장애자용 정보단말기 개발
- 다중매체 환경하에서의 대화체 음성 번역 통신기술 개발
- 신경망 알고리즘을 기반으로 한 지능형 VRP Kernel 기술 개발
- 신경망 기술과 퍼지이론을 이용한 영상검지기 개발 등

□ 2002년도 계획

- 주요 연구 내용
 - 뇌파 기반 휴면 인터페이스 기술 개발
 - 게임용 생체신호(뇌파, 근전도, 안전도) 인터페이스 개발
 - 치매, 정신장애자를 위한 VR 의료시스템 개발
 - 유무선통신 환경하의 뇌공학을 이용한 멀티모드 휴먼 인터 페이스 기술개발
- 당해 연도 연구비 : 3,000백만원
- 주요 추진 일정
 - 2001. 12 : 2002년도 정보통신기술개발 시행계획 확정
 - 2002. 1 : 연구결과 기술이전 및 상용화를 위한 기술협력
 - 2002. 11 : 추진실적 평가 및 차년도 수행계획 수립

□ 소요예산 조달계획

년 도	′98~2001	2002	2003~2007	계
투자액	11,700	3,000	12,200	26,900

붙임 1 뇌신경생물학연구사업 세부내용 (2단계)

- 신경계의 발생, 사멸 및 재생
 - 신경계 세포의 유도
 - 신경계 세포의 증식과 분화
 - 신경계 세포의 이동 기작
 - 시냅스의 형성기전
 - 신경계세포의 사멸기작 및 표적찾기의 분자적 기작
 - 신경계의 재생의 세포, 분자생물학적 기전
 - 신경세포와 비신경세포의 상호작용
 - 신경영양인자의 역할 및 작용기전
 - 신경줄기세포와 뇌이식

○ 신경신호전달

- 이온채널의 세포, 분자생물학적 기전
- 신경전달물질 및 운반체
- 신경전달물질의 합성 및 분비
- 신경전달물질 수용체
- 신경세포 신호전달기작
- 신경정보처리 관련 유전자 구조 및 조절

○ 신경계의 가소성

- 시냅스의 재구성
- 단기, 장기 시냅스 촉진
- 장기강화 및 억제
- 신경전달물질 분비 및 수용체 변화
- 기억관련 유전자 및 단백질 검색

- 형질전환 및 유전자 파괴를 이용한 실험 동물모델
- 대뇌와 기억
- 변연계의 기능: 해마 및 편도체
- 신경 조율 물질의 작용
- 기억 증진 물질 검색
- 신경시스템의 구조와 통합조절
 - 감각운동 통합조절
 - 감각이상 기전
 - 자율신경조절
 - 신경내분비 조절
 - 신경계와 면역계 상호작용
 - 신경계의 성분화
 - 미세신경회로 구조
- 고등 신경기능 및 행동 연구
 - 인지기능의 신경생물학적 연구
 - 학습과 기억의 생물학적 기전
 - 동기 및 감정
 - 스트레스
 - 섭식, 성, 공격적 행동
 - 수면
 - 일주기, 생체리듬
 - 보상계
 - 행동변이 연구
 - 유전적 동물모델 및 행동표현형 분석법 개발

붙임 2 뇌신경정보학연구사업 세부내용 (2단계)

- 뇌정보처리 메카니즘에 기반한 인공 시각 시스템 연구
 - 초기시각 및 시신경계 정보처리 모델
 - 두눈을 이용한 공간지각 모델
 - 움직임 보상 시각 모델 및 응용
 - 상향식(Bottom-Up) 및 하향식(Top-Down) 주의집중 모델 및 인공시각 응용
 - 실세계 영상의 인식 및 추적 (인식율 90% 이상)
 - 복잡한 동영상을 인식하고 추적하는 256x256 화소 시각침
- 뇌정보처리 메카니즘에 기반한 인공 청각 시스템 연구
 - 초기청각 및 청신경계 정보처리 모델
 - 두귀를 이용한 음원탐색 모델 및 응용
 - 주의집중에 의한 음성신호 향상 모델 및 응용
 - 자연어처리의 신경회로망 모델
 - 실세계 잡음(10 dB) 하 연속음성의 인식(인식율 97% 이상)
 - 잡음하 연속음성을 인식하는 32 filter 청각칩
- 뇌정보처리 메카니즘에 기반한 인지 및 추론 시스템 연구
 - 기억 및 학습과정과 구조의 인지신경기전 연구 및 모델
 - 언어 처리와 표상형성의 인지신경기전 연구 및 모델
 - 인간다운 유연하고 정확한 추론 모델 (신뢰도 70% 이상)
 - 동기유발 및 감정도입 학습 모델
 - 신경망 기반의 에이전트 기술 (인공비서 등)
 - 신경망 기반의 정보검색 기술 (검색 에이전트 등)

- 뇌정보처리 메카니즘에 기반한 인간행동 시스템 연구
 - 공간 이동 및 계획 모델
 - 인간행동에 기반한 자율학습 행동 모델
 - 감각-운동제어 모델
 - 다중 분산지능 행동시스템 (자동운전시스템 등)
 - BCI(Brain-Computer Interface)
- fMRI을 이용한 뇌기능지도 연구
 - 뇌기능지도(Human Brain Mapping)
 - 신경망의 가소성 및 재조직
 - 신경정보학 알고리즘 및 소프트웨어

붙임 3 뇌의약학연구사업 세부내용 (2단계)

- 뇌신경세포의 손상 및 재생 기전 연구
 - 각종 뇌손상 모델에서 신경세포의 사멸기전 연구
 - 각종 뇌손상 모델에서 신경세포의 재생촉진인자 연구
 - 뇌신경세포의 손상 및 재생에 있어서의 교세포의 역할 연구
 - 말초신경의 신경세포 사멸기전 및 신경연접의 재생 연구
- 치매, 뇌졸중, 간질 등 뇌신경질환의 발병기전·예방·진단· 치료기술 개발
 - 치매 등 퇴행성 뇌질환에서 신경세포 퇴행 방지 및 인지 기능 향상 기술 개발연구
 - 뇌졸중에서의 응급진단 및 치료기술 개발연구
 - 수술적 및 비수술적 간질 치료기술의 개발 및 차세대 항간질 약물의 개발 연구
 - 정신분열증, 우울증 등 주요 정신질환의 발병기전·치료기술 및 약물 개발 연구
 - 통증의 억제 기술 및 차세대 진통 약물의 개발 연구
 - 크로이츠펠트-야콥병의 발병기전·예방·진단·치료기술 개발
- 뇌신경질환의 치료약물 탐색 및 전임상시험 연구
 - 천연물 및 합성을 이용한 난치성 뇌신경질환의 치료약물 탐색
 - 뇌신경질환에 대한 활성 검색을 위한 약효검색시스템 연구
 - 확보된 신물질에 대한 독성시험, 안전성시험, 약리작용연구 등의 전임상시험

- 뇌질환과 관련된 유전체 연구
 - 알츠하이머병, 파킨슨병, 헌팅턴병 등 각종 퇴행성 뇌질환의 원인 유전자의 분석 및 기능 규명
 - 뇌손상에 대한 병적 반응과 재생에 관여하는 유전자의 분석과 기능 규명
 - 규명된 유전자를 이용한 DNA chip의 개발 및 각종 진단 시약의 개발
 - 규명된 유전자를 억제 혹은 조절할 수 있는 생명공학 의약품의 개발
- 뇌신경질환 첨단치료방법 및 원천기술의 확보
 - 세포치료(Cellular therapy) 기술의 향상을 위한 신경원조세포 배양 및 분화 기술의 확립
 - 조직공학(Tissue engineering)을 이용한 신생명소재(biomaterial)의 뇌척수 신경 재생치료에의 적용
 - 뇌질환의 유전자치료기술(Gene therapy)의 확립
 - 뇌질환 동물모델 개발